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Introduction

The Coronavirus Disease 2019 (COVID-19) still remains a pan-
demic in 2022. Furthermore, the presence of the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of 
concern (VOC) has contributed to the majority of the COVID-19 
incidences. On November 26, 2021, the World Health Organiza-
tion (WHO) declared a novel SARS-CoV-2 VOC named Omicron 
(Pango Lineage B.1.1.529).1 Whole-genome sequencing results of 
the Omicron variant revealed approximately 50 mutations; many 
of which occurred in the spike glycoprotein, particularly in its 

receptor-binding domain (RBD).1,2 The spike glycoprotein is an 
essential component of SARS-CoV-2 because it facilitates the viral 
entry into the host cells and serves as the primary target of neutral-
izing antibodies. Hence, changes in the spike glycoprotein raise a 
serious concern on whether the existing immunity, either due to 
natural infection or vaccination, could still protect the population 
from the Omicron variant.3 This review was thus written to discuss 
the Omicron variant and its sublineages and to analyze the effec-
tiveness of current COVID-19 vaccines and treatments to protect 
individuals against SARS-CoV-2 infection and severe COVID-19, 
respectively.

The emergence and hallmarks of the Omicron variant

The SARS-CoV-2 Omicron variant has driven the latest infec-
tion wave worldwide to date. This VOC was initially detected in 
Gauteng province, South Africa, on November 8, 2021, and Gabo-
rone, Botswana on November 11, 2021. In mid-November 2021, 
Gauteng province experienced a surge of SARS-CoV-2 infection 
cases accompanied by increased spike gene target failure (SGTF) 
during amplification with the polymerase chain reaction (PCR). 
The subsequent whole-genome sequencing revealed a highly mu-
tated spike glycoprotein, including Δ69–70 deletion (previously 
detected in the Alpha variant) that caused the SGTF. The variant’s 
existence was reported to the WHO on November 24, 2021, which 
prompted the WHO to declare the Omicron as a novel VOC on 
November 26, 2021.4,5

A substantial increase of Omicron’s infectivity is attributed to 
numerous mutations, which occurred primarily on its spike gly-
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coprotein, consequently conferring a higher affinity to the human 
Angiotensin-converting enzyme 2 (ACE2), as well as a higher 
evasion from existing monoclonal antibodies and vaccine gener-
ated neutralizing antibodies.6 An increased affinity of the Omicron 
spike glycoprotein to bind to the ACE2 orthologs of animal origin 
was hypothesized in order to grant a zoonotic potential to infect 
animals, such as rodents and poultry.7,8 Collectively, these would 
enable the Omicron variant to reinfect convalescent and vacci-
nated individuals, in addition to infecting infection-naïve, unvac-
cinated individuals.9–11

Unlike other SARS-CoV-2 VOCs, the Omicron variant prefers to 
infect cells via the Cathepsin-dependent endosomal route and rep-
licates in the upper respiratory tract due to its hindered capabilities 
of utilizing transmembrane serine protease 2 (TMPRSS2), mainly 
found in the lungs, as an entry route. This impedes the Omicron 
variant’s abilities to infect lung tissue and to form syncytia, which 
might result in less severe clinical symptoms among Omicron-in-
fected individuals.8,12–16 Several reports indicated that mutations in 
the Omicron spike glycoprotein noticeably altered the viral behav-
ior upon infection.16–18 The N764K and/or N856K mutations intro-
duced a spike glycoprotein cleavage site (cleaved by the SKI-1/S1P 
protease found in the upper respiratory tract but not the lungs) that 
could hamper the viral membrane fusion and syncytia formation, 
hence localizing the viral replication in the upper respiratory tract.19 
As a consequence, the N969K mutation affirmed the Omicron vari-
ant’s preference of using the Cathepsin-dependent endosomal entry 
route rather than the TMPRSS2-mediated cell surface fusion route.8 
The reduced syncytia formation and localized viral replication in the 
upper respiratory tract could result in milder clinical symptoms and 
less severity upon the Omicron infection in exchange for immune 
evasion and increased transmissibility.

As shown in Figure 1, phylogenetic studies using the Next-
strain20 tree schema of the SARS-CoV-2 genome sequences indi-
cated that the Omicron variant (Nextstrain Clades 21K-22C) origi-

nated from Nextstrain Clade 20B. However, it could not explain 
the sudden increase of accumulated mutations, particularly on the 
spike glycoprotein as well as its originating hosts. The Omicron 
variant was hypothesized to emerge independently from a collec-
tion of unaccounted hosts, such as animals and chronically-infect-
ed individuals, which for an unknown amount of time were under 
little surveillance.21 Over time, it had accumulated numerous mu-
tations until it was detected in South Africa and Botswana in No-
vember 2021. In comparison to the original SARS-CoV-2 sampled 
in Wuhan, China in 2019 (i.e., the ancestral strain), approximately 
30 novel mutations were found in the spike glycoprotein of the 
Omicron variant.19 A mutation of D614G was proposed to confer 
a better spike glycoprotein stability with reduced S1 shedding and 
therefore greater transmission efficiency.22 Mutations of Δ142-
144, Y145D, S371L, K417N, N440K, G446S, E484A, Q493R, and 
N501Y were suggested to confer an increased antibody evasion, 
which hampered therapeutic antibodies and existing vaccine effec-
tiveness.23 Mutations of S477N, T478K, Q493R, G496S, Q498R, 
N501Y, and Y505H were postulated to confer an increased binding 
affinity of the spike glycoprotein to ACE2, in which the Q498R 
and N501Y mutations strengthened the spike glycoprotein’s bind-
ing with ACE2 of murine origin.24–28 Mutations of P681H, H655Y, 
and N679K were postulated to confer an increase in the rate of 
cleavage of the spike glycoprotein by the Furin enzyme.14 The 
mutations of N764K and/or N856K were suggested to introduce a 
cleavage site on the spike glycoprotein for the SKI-1/S1P protease, 
which was normally found in the upper respiratory tract but not in 
the lungs. Therefore, the cleavage of the spike glycoprotein in this 
manner might hinder the Omicron variant’s membrane fusion and 
syncytia formation.19 Collectively, these would confer increased 
infectivity and transmission, antibody evasion, as well as altered 
infection behavior of the Omicron variant.

As of early June 2022, two Omicron sublineages, referred to as 
Pango Lineages BA.4 and BA.5 (Nextstrain Clades 22A and 22B, 

Fig. 1. The Nextstrain tree of the SARS-CoV-2 genome sequences. The numbers of accumulated mutations in the spike subunit 1 glycoprotein are shown 
with color codes. The Nextstrain tree indicates that the Omicron variant (21M) originated from the Nextstrain Clade 20B, and that it was not derived from 
the previous variants of concern (i.e., Alpha, Beta, Gamma, and Delta variants). The figure was generated using the Nextstrain software with a built-in SARS-
CoV-2 workflow and visualized using Auspice software.20
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respectively), emerged and began to spread worldwide at an alarm-
ing rate.29 Tuekprakhon et al.30 suggested that two new mutations 
observed in BA.4 and BA.5 (i.e., L452R and F486V) conferred 
a greater ability of antibody evasion than its ancestor, Nextstrain 
Clade 21L. The fact that BA.4 and BA.5 appeared to cause lower 
hospitalization and mortality rates as compared to the ones by the 
pre-Omicron variants and previous Omicron sublineages was of 
interest to public health globally, as this could reflect the popu-
lation-level immunity against SARS-CoV-2.29 A comparison of 
mutational maps among the Omicron sublineages is displayed in 
Figure 2.31,32

Of note, the COVID-19 diagnosis was confirmed by the reverse 
transcription-quantitative polymerase chain reaction (RT-qPCR), 
33,34 and various modifications of this assay could be used to pre-
dict an infection by the Omicron variant, particularly in low- to 
middle-income countries that lacked next-generation sequencing 
(NGS) facilities. One of those modified assays was the RT-qPCR-
based SGTF assay because a Δ69–70 deletion in most sublineages 
of the Omicron (i.e., BA.1, BA.1.1, BA.3, BA.4, and BA.5) would 
hinder a detection of the spike gene but not of other genes.35,36 
However, this assay would not be able to differentiate between 
those sublineages of Omicron;35 hence, the NGS facility was re-
quired to confirm the diagnosis.

Current treatments for COVID-19

Although the signs and symptoms of the Omicron infection are 
generally mild, the disease needs to be treated adequately, particu-
larly among at-risk populations who contract severe COVID-19.37 
When COVID-19 emerged in late 2019, no suitable medication 
was initially available. Therefore, drug repurposing became an ef-
fective and rapid way to identify existing drugs with well-estab-
lished safety profiles in order to treat COVID-19.38 Several drugs 
with known benefits for treating COVID-19 patients evaluated 
by trustworthy clinical trial study groups (i.e., the RECOVERY, 
Solidarity, ACTT, and PRINCIPLE clinical trials), are shown in 
Table 1.39-47 Of note, drugs with no benefit are not shown. Briefly, 
the Randomized Evaluation of COVID-19 Therapy (RECOVERY) 
was one of the largest international clinical trials on COVID-19 
treatment coordinated by the University of Oxford, UK.48 The 
Solidarity clinical trial was also an unprecedented, international 
collaboration, which was conducted by the WHO, to identify life-
saving treatments for COVID-19 involving a large number of pa-
tients (∼12,000 patients) from more than ∼30 countries.49 Like-
wise, the Adaptive COVID-19 Treatment Trial (ACTT) was an 
adaptive, randomized, double-blind, placebo-controlled trial con-
ducted by the National Institute of Allergy and Infectious Diseases 
(NIAID) to evaluate the safety and effectiveness of novel thera-
peutic agents in hospitalized adults diagnosed with COVID-19 in 
the United States of America.50 The Platform Randomised Trial 
of Treatments in the Community for Epidemic and Pandemic Ill-
nesses (PRINCIPLE) was a multicenter, open-label, multi-arm, 
randomized, controlled, adaptive, United Kingdom-wide clinical 
study from the University of Oxford to discover COVID-19 treat-
ments for recovery at home.51 Moreover, two novel oral antiviral 
medications were recently approved by several countries to treat 
adults with mild-to-moderate COVID-19 who were at risk of de-
veloping severe illness.52 The first of these was Molnupiravir by 
Merck Sharp and Dohme with the brand name of Lagevrio®,52,53 
which was a small-molecule ribonucleoside prodrug of N-hydrox-
ycytidine (NHC) that underwent phosphorylation within the cells, 
thus becoming NHC triphosphate.52,54 This phosphorylated agent 

became incorporated by viral RdRp into its genome by accumulat-
ing deleterious errors throughout the viral genome that rendered 
the virus non-infectious and unable to replicate.52,54 The current 
prescribed dosage is 800 mg of molnupiravir every 12 hours for 
five days within five days of symptom onset.53 It was reported that 
early treatment with molnupiravir was safe and could reduce the 
risk of hospitalization or death by approximately 30% in at-risk, 
unvaccinated adults with COVID-19.54 The second one was a com-
bination of 150 mg Nirmatrelvir and 100 mg Ritonavir by Pfizer 
with the brand name of Paxlovid™.52 Nirmatrelvir was an orally 
administered antiviral agent targeting the SARS-CoV-2 3-chymot-
rypsin–like cysteine protease enzyme (Mpro) that was essential for 
viral replication.55 Simultaneously, ritonavir inhibited cytochrome 
P450 that metabolized nirmatrelvir, consequently resulting in in-
creased concentrations of nirmatrelvir within the blood plasma.52 
Additionally, it was reported that administration of nirmatrelvir 
plus ritonavir was safe and could lower the risk of progression to 
severe COVID-19 by approximately 89%.52,55

Next, the knowledge related to the interaction between the viral 
spike glycoprotein and ACE2 was translated to create anti-SARS-
CoV-2 monoclonal antibodies (mAbs) that could inhibit the spike 
glycoprotein. As this treatment was functioned to block the viral 
entry/spread, it should be administered immediately after the diag-
nosis has been confirmed and within seven days of symptom on-
set.56 Several therapeutic anti-SARS-CoV-2 mAbs have received 
emergency use authorizations by the Food and Drug Administra-
tion, USA to date: (i) bamlanivimab plus etesevimab, (ii) casiriv-
imab plus imdevimab, (iii) sotrovimab, (iv) bebtelovimab, and 
(v) tixagevimab plus cilgavimab. The first four products could be 
administered intravenously to treat mild to moderate COVID-19 
patients who were at high risk of contracting severe illness, while 
the last product could be administered intravenously for uninfected 
individuals who were at risk of eliciting an inadequate immune re-
sponse to a COVID-19 vaccination or who had a history of severe 
adverse reactions to a COVID-19 vaccine or any of its compo-
nents.56 Of note, the effectiveness of the anti-SARS-CoV-2 mAbs 
depended on the circulating SARS-CoV-2 variant. Pertaining to the 
Omicron infection, sotrovimab, in contrast to bamlanivimab plus 
etesevimab as well as casirivimab plus imdevimab, was observed 
to be still effective against BA.1 or BA.1.1 in vitro and in vivo.56,57 
The antiviral activity of sotrovimab, however, decreased signifi-
cantly against BA.2; hence, only bebtelovimab was recommended 
for Omicron-infected patients as bebtelovimab still retained suffi-
cient in vitro activity against the current Omicron sublineages.56,58

Prophylactic vaccines for COVID-19

The proverb ‘prevention is better than cure’ could not be more rel-
evant amidst the COVID-19 pandemic. The world has witnessed 
the rapid development and deployment of various COVID-19 pro-
phylactic vaccines, which have the potential to generate specific 
immune responses as a protection against SARS-CoV-2 infection. 
As of June 21, 2022, there were 38 approved vaccines, of which 
11 vaccines (from four different types) were granted emergency 
use listing (EUL) by the WHO (Table 259). Different technologies 
were used in developing those four types of vaccines. The inacti-
vated viral vaccine was arguably the simplest, but the most com-
mon, technology to develop a prophylactic vaccine. After culturing 
and collecting viral particles from a certain cell culture, the viral 
particles were inactivated through exposure to physical or chemi-
cal agents, such as formalin or β-propiolactone, to destroy the vi-
ral infectivity while retaining the immunogenicity.60 Briefly, the 
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Fig. 2. Mutation map of the SARS-CoV-2 Omicron Variant. Spike glycoprotein mutation maps of the Omicron variant sublineages (i.e., Nextstrain Clade 21K-21L-
22A-22B-22C) are compared. The three domains of the spike glycoprotein (S1-N Terminal Domain, RBD, and S2) are displayed. The image was generated using 
the Nextclade software31 and visualized using the Lollipops software32 with UniProt sequence P0DTC2 as reference. RBD, receptor-binding domain.
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BBV152 vaccine was created from a whole SARS-CoV-2 virion 
(strain NIV-2020-770) with the D614G mutation of the spike pro-
tein. The viral particles were cultured in the African green monkey 
kidney cell line (Vero) and inactivated by β-propiolactone. This 
inactivated viral vaccine was formulated with a toll-like receptor 
7/8 agonist (imidazoquinoline) adsorbed to alum; hence, it became 
the first alum-imidazoquinoline-adjuvanted vaccine that was au-
thorized for public use.61–63 The BBIP-CorV vaccine was created 
from a whole SARS-CoV-2 HB02 strain (cultured in the Vero 
cell line), inactivated by β-propiolactone, and formulated with an 
aluminum-based adjuvant.64,65 Similarly, the CoronaVac vaccine 
was created from a whole SARS-CoV-2 CZ02 strain (cultured in 
the Vero cell line), inactivated by β-propiolactone, and adjuvanted 
with aluminum hydroxide.66

The protein subunit vaccine contained purified antigen frag-
ments of the pathogen to activate host immune responses against 
it. The chosen antigens ranged from toxoids, subcellular com-
ponents, to surface molecules. It could be produced by utilizing 
conventional biochemical or recombinant DNA technology.67 The 
NVX-CoV2373 vaccine was developed from the SARS-CoV-2 re-
combinant spike protein with a Matrix-M adjuvant coupled with 
several inactive ingredients. The recombinant spike protein was 
constructed in silico based on the full length of the spike glyco-
protein from the wild-type SARS-CoV-2 (i.e., the Wuhan-Hu-1 
isolate) documented in GenBank (the sequence MN908947; nu-
cleotides 21563-25384). Subsequently, the recombinant spike pro-
tein was produced by using DNA technology with the baculovirus 
expression system (BEVS). Of note, this system utilized baculo-
virus, which was an insect virus, to infect a cell line that was de-
rived from Sf9 cells of the fall armyworm, Spodoptera frugiperda. 
The BEVS-produced spike protein was subsequently used for the 
vaccine.68 In addition, the Matrix-M adjuvant comprised saponin, 
cholesterol, and phospholipid, which this adjuvant was known to 
induce greater humoral and cellular immune responses.69

A non-replicating viral vector vaccine deployed viral particles 
that have lost their replicating ability to deliver a vaccine antigen 
into the host cells. Several viral vectors, including adenovirus, 
adeno-associated virus, alphavirus and herpesvirus, were designed 
primarily to be replication-defective vectors.70 In order to modify 
the adenovirus as a viral vector, the E1 and/or E3 genes of the ad-

enovirus (essential for viral replication) were deleted or replaced 
with a gene of interest (i.e., target antigen). Of note, multiple stud-
ies on adenoviral vectors focused on human adenovirus serotype 5 
(Ad5), thus allowing it to be the best studied adenoviral vector.71 
The Ad5.COV2.S vaccine utilized this vector to carry a full-length 
SARS-CoV-2 spike gene.72 The majority of the human popula-
tion, however, has been discovered to have pre-existing immunity 
against Ad5 presumably due to natural infection.73,74 As a result, 
this raised a need to use a less prevalent adenovirus as the viral 
vector. The human Ad26 was observed to be less prevalent and 
less immunogenic than Ad5, but could still be an effective vec-
tor for COVID-19 vaccine.71 Similar to Ad5.COV2.S, the Ad26.
COV2.S vaccine used Ad26 as a vector to encode a full-length 
SARS-CoV-2 spike glycoprotein.75 Another creative innovation 
for circumventing pre-existing immunity against human adenovi-
ral vectors was by using the chimpanzee adenovirus (ChAd). The 
ChAdOx1 was isolated from the fecal sample of a chimpanzee and 
was edited by deleting its E1/E3 gene and modifying its E4 gene. 
The ChAdOx1-S vaccine was subsequently developed by using 
ChAdOx1 to carry the SARS-CoV-2 spike gene.71

The messenger RNA (mRNA) vaccine was arguably the newest 
and most advanced technology to develop vaccines. This technolo-
gy inserted mRNA containing the viral genetic information into the 
cells, which would be translated into specific antigens and could 
induce specific immune responses. There has been vast interest 
in using mRNA-based technology to develop COVID-19 vaccines 
due to its presumably safe administration and high potency, capac-
ity for rapid development, as well as potential for low-cost manu-
facturing.71,76,77 The mRNA-1273 vaccine was an mRNA vaccine 
encapsulated by a lipid-nanoparticle (LNP) that expressed a pre-
fusion-stabilized spike glycoprotein.78,79 The BNT162b2 vaccine 
was an mRNA vaccine encapsulated by LNP that encoded the P2 
mutant spike protein, in which it was formulated as an RNA-lipid 
nanoparticle of nucleoside-modified mRNA.80

Performances of the approved COVID-19 vaccines

The above-mentioned vaccines have been shown to generate host 
immune responses that may have variable levels of immunity and 

Table 2.  Vaccines granted Emergency Use Listing by the WHO59

Vaccine Type Manufacturer Research Name Trade Name Date Granted EUL 
by the WHO

Protein subunit Novavax# NVX-CoV2373 Nuvaxovid December 20, 2021

Serum Institute of India# NVX-CoV2373 Covovax December 17, 2021

mRNA Moderna mRNA-1273 Spikevax April 30, 2021

Pfizer/BioNTech BNT162b2 Comirnaty December 31, 2020

Non- replicating viral vector CanSino Ad5.COV2.S Convidecia May 19, 2022

Janssen (Johnson & Johnson) Ad26.COV2.S/JNJ-78436735 Jcovden March 12, 2021

Oxford/AstraZeneca* ChAdOx1-S Vaxzevria February 15, 2021

Serum Institute of India* ChAdOx1-S Covishield February 15, 2021

Inactivated virus Bharat biotech BBV152 Covaxin November 3, 2021

Sinopharm BBIBP-CorV Covilo May 7, 2021

Sinovac CoronaVac CoronaVac June 1, 2021

#Both Nuvaxovid and Covovax use the same formulation (the Novovax formulation). *Both Vaxzevria and Covishield use the same formulation (the Oxford/AstraZeneca formula-
tion). mRNA, messenger RNA; WHO, World Health Organization.
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different immune-inducing processes between them. Two types of 
immunities which may be induced by vaccination are cellular and 
humoral immunities. The activated cellular immunity is known to 
increase the CD4+ and CD8+ T cell-mediated immune responses in 
order to protect the vaccinated hosts. The activated humoral immu-
nity involves the production of neutralizing antibodies by the plas-
ma cells. The humoral and cellular immune responses induced by 
the mRNA-1273, BNT162b2, Ad26.COV2.S, and NVX-CoV2373 
vaccines were also researched by Zhang et al.81

The advantages and disadvantages of each type of vaccine are 
shown in Table 3.82 Three inactivated SARS-CoV-2 vaccines that 
received EUL from the WHO were BBV152, BBIBP-CorV, and 
Coronavac.59 The inactivated viral vaccine was one of the most 
common types of vaccines because this technology was well-es-
tablished and had a higher safety profile than the live attenuated 
viral vaccine.83 The inactivated viral vaccine was less immuno-
genic than the live attenuated viral vaccine, thus requiring a strong 
adjuvant formulation and/or administration of multiple doses.83 
All three inactivated vaccines induced humoral immunity and pro-
vided an adequate protection from severe COVID-19 and death 
(but not mild/moderate illness) after completing two doses of vac-
cination.84–89 The effectiveness of two doses of CoronaVac vac-
cination in Hong Kong in terms of protection against severe illness 
and death among younger adults of 20–59 and >60 years old were 
91.7% and 71.1%, respectively.90 The common adverse events 
were mostly mild to moderate, including pain at the injection site, 
fatigue, fever, headache and swelling.62,91,92 It was observed that 
the immune responses induced by all COVID-19 vaccines waned 
over time, in which a substantial reduction was observed among 
individuals receiving inactivated SARS-CoV-2 vaccines.93,94 This 
raised the importance of a heterologous prime boost strategy after 
two doses of primary vaccination with an inactivated viral vac-
cine in order to generate stronger and longer immunity.84,95,96 The 
current protein subunit COVID-19 vaccine that has received EUL 
from the WHO was NVX-CoV2373 (under the brands of Nu-
vaxovid and Covovax).59 Although less immunogenic than the live 
attenuated viral vaccine, the protein subunit vaccine with a strong 
adjuvant formulation or improved vaccine carrier could still gener-
ate sufficient humoral and cellular immune responses.81,97,98 Sev-
eral studies have reported that this protein subunit vaccine offered 
±90% protection against the SARS-CoV-2 Alpha infection and a 
reduction in the rate of hospitalization. However, its effectiveness 
toward other variants was reduced, i.e., between ±50% to ±90%.99–
102 The adverse events were primarily mild, including headache, 
myalgia, fatigue, and malaise.99,100 Furthermore, this type of vac-
cine would be an ideal choice for administering to individuals with 
immunosuppression.99

The current non-replicating viral vector COVID-19 vac-

cines that received EUL from the WHO were Ad5.COV2.S, 
Ad26.COV2.S, and ChAdOx1-S.59 The Ad5.COV2.S and Ad26.
COV2.S vaccines utilized human adenovirus serotype 5 (Ad5) 
and 26 (Ad26), respectively to carry the gene of the spike protein. 
The ChAdOx1-S (under the brands of Vaxzevria and Covishield) 
in contrast used chimpanzee adenovirus to carry the gene of the 
SARS-CoV-2 spike protein. Additionally, the non-replicating viral 
vectors were known for their ability to drive a high degree of ex-
pression of the target antigen, thus being able to induce strong cel-
lular and humoral immune responses. Nevertheless, the induced 
immune responses by the non-replicating viral vector COVID-19 
vaccines are relatively lower in comparison to the mRNA-based 
vaccines.81,103 As mentioned, a pre-existing immunity toward the 
Ad5 vector would reduce the vaccine’s ability to generate a spe-
cific immune response.73,74 On the contrary, the Ad26 vector is 
known to be less immunogenic than Ad5, but it is still an effec-
tive vector for immunization.71 Ad5.COV2.S, Ad26.COV2.S, and 
ChAdOx1-S reduced the overall COVID-19-related symptoms by 
65.7%, 66%, and 64.1%, respectively after a single vaccine dose. 
The common adverse events were pain at the injection site, swell-
ing, headache, fatigue, muscle ache, malaise, and fever. However, 
a rare and serious adverse event upon the administration of the 
Ad26.COV2.S or ChAdOx1-S vaccines had been reported, i.e., 
thrombosis with thrombocytopenia syndrome.104–107 This syn-
drome was presumed to have occurred due to the production of 
autoantibodies against platelet factor 4 after vaccination.104–107 In 
addition, the Ad26.COV2.S administration was associated with 
an elevated incidence of Guillain-Barré syndrome.108 Of note, 
Ad26.COV2.S and ChAdOx1-S were contraindicated for indi-
viduals with a history of severe anaphylactic reactions.109

The mRNA COVID-19 vaccines granted EUL by the WHO were 
mRNA-1273 and BNT162b2.59 The mRNA-based vaccines induced 
robust cellular and humoral immunities, respectively. During the 
period of the pre-Delta variants, the effectiveness of both mRNA 
vaccines in protecting adults against symptomatic infection was ex-
cellent, i.e., around 89–95%.78,110,111 Similar to Ad26.COV2.S and 
most likely other available vaccines, a reduction in the effectiveness 
of both mRNA vaccines against COVID-19 illness was observed 
during the wave of the Delta variant.111,112 Both mRNA vaccines had 
relatively favorable safety profiles with common adverse events, 
such as soreness at the injection site, fever, fatigue, chills, and head-
ache.113 Nonetheless, rare and serious adverse events were also re-
ported following administration of the mRNA vaccines, including 
myopericarditis, acute myocardial infarction, and anaphylaxis.113 
Of note, a technical limitation of the mRNA vaccines was that they 
needed to be kept at a very low temperature; hence, this hindered a 
worldwide deployment of the mRNA COVID-19 vaccines, particu-
larly in under-resourced countries.81,101,114,115

Table 3.  Strength and weakness of COVID-19 vaccines granted EUL by the WHO

Vaccine Type Strengths Weakness

Protein subunit Safe for immunocompromised people; can induce 
a cellular and humoral immune response.

Less immunogenic.

mRNA Strong cellular and humoral immune response. Difficult storage condition; rare 
but serious adverse events.

Non-replicating viral vector Strong cellular and humoral immune response. Anti-vector immunity; rare 
but serious adverse events.

Inactivated virus Mild adverse events; sufficient humoral immunity response. Less immunogenic; 
protection wanes quickly.

COVID-19, coronavirus disease 2019; EUL, emergency use listing; mRNA, messenger RNA; WHO, World Health Organization.
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Booster vaccination against SARS-CoV-2 infection

As mentioned, all COVID-19 vaccines that had been adminis-
tered as the primary vaccination would experience a waning in 
their respective protective abilities over time, especially against 
newer SARS-CoV-2 variants. Thus, the reduction in a vaccine’s ef-
fectiveness highlighted the importance of administering a booster 
vaccine. Two types of booster vaccinations are currently available: 
homologous and heterologous prime-boost vaccination. While the 
homologous prime-boost vaccination is a booster that is adminis-
tered by using the same vaccine used in the primary vaccination, 
the heterologous prime-boost vaccination is a booster that is ad-
ministered by using a vaccine that differs from the one used in the 
primary vaccination.95,116

Briefly, homologous and heterologous booster vaccinations 
were safe and immunogenic among adults who had completed the 
primary vaccination of COVID-19 at least 12 weeks earlier.117 The 
homologous booster appeared to have more optimum effects in in-
dividuals who had received a primary vaccination of the mRNA 
COVID-19 vaccines, as the booster restored titers of neutraliz-
ing antibodies.90,117 In light of this, certain populations/countries 
would prefer to receive a homologous booster with a lesser immu-
nogenic vaccine (e.g., inactivated viral vaccine), for example due 
to a concern of adverse events, which might be associated with a 
stronger immunogenic vaccine. Encouraging evidence from Hong 
Kong also suggested that three doses of CoronaVac provided better 
protection than two doses of CoronaVac against severe COVID-19 
or death,90 consequently indicating that boosters with any type 
of approved COVID-19 vaccine could provide protection against 
severe illness. Next, heterologous boosters appeared to have opti-
mum effects in individuals who had received primary vaccination 
with either inactivated viral or non-replicating viral vector vaccine 
(i.e., arguably less immunogenic than the mRNA vaccine) and 
subsequently received a booster with an mRNA vaccine due to the 
substantial elevation in the levels of neutralizing antibodies post 
booster administration.96,116,117 This finding was supported by an-
other finding, which reported that a heterologous booster among 
CoronaVac-vaccinated individuals with the Ad5.COV2.S vaccine 
induced greater cellular and humoral immune responses, as com-
pared to the results observed upon a homologous vaccination with 
CoronaVac.118 Taken together, the booster vaccination was safe and 
effective in protecting individuals against SARS-CoV-2 infection.

Effectiveness of the COVID-19 vaccination against the Omi-
cron variant

The SARS-CoV-2 Omicron variant has swiftly replaced the Delta 
variant to cause the latest wave of infection globally. This variant 
has approximately 30 mutations in its spike protein; 15 of which 
are clustered within the RBD of SARS-CoV-2 Omicron.119 As cur-
rently available COVID-19 vaccines concentrate on generating 
immune responses toward the viral spike protein, these mutations 
have raised some concern regarding the effectiveness of the avail-
able COVID-19 vaccines against Omicron infection.

Various studies have been performed in order to assess the ef-
fectiveness of the current vaccines against the SARS-CoV-2 Omi-
cron variant. It has been reported that the effectiveness of two 
doses of mRNA-1273 vaccination against the Omicron variant 
declined after six months.120,121 As mentioned, a way to restore 
immunity and protection against the Omicron variant is by admin-
istering a booster (third dose) of the mRNA-1273 vaccine.122 Simi-
larly, an in vitro study indicated that two doses of BNT162b2 were 

likely to be insufficient to neutralize the Omicron variant, and that 
a third dose of BNT162b2 was required to neutralize the Omicron 
variant effectively.90,123 A study conducted in the UK reported that 
two doses of BNT162b2 or ChAdOx1-S provided limited protec-
tion against symptoms of the Omicron infection and that a booster 
vaccination with BNT162b2 or mRNA-1273 would substantially 
increase the level of protection.116 Likewise, results from a study 
in South Africa supported this observation, which showed that a 
minimum of two doses of BNT162b2 or Ad26.COV2.S were re-
quired to provide protection against Omicron.124 However, it was 
reported that the fourth dose of BBIBP-CorV did not significantly 
increase the neutralizing antibody titers against the Omicron vari-
ant as compared to the ones observed after the third dose, thus sug-
gesting that the inactivated viral COVID-19 vaccine was less im-
munogenic and that the homologous booster of this vaccine did not 
provide an optimum level of protection.125 Additionally, a study 
in the Dominican Republic reported that two doses of CoronaVac 
were not effective against the Omicron infection, but a heterolo-
gous booster with BNT162b2 could enhance the neutralization 
activity against the Omicron variant.126 This result was also sup-
ported by our study, which reported that a majority of healthcare 
workers who had received a primary vaccination with CoronaVac 
and a heterologous booster with 100 mg of mRNA-1273 vaccine 
could be protected from the Omicron infection and the severity of 
the COVID-19 illness (manuscript in submission).

Collectively, the humoral immunity generated by the above-
mentioned vaccines could wane over time and could be insufficient 
in neutralizing novel Omicron sublineages. Therefore, it is worth 
mentioning that the concern of losing vaccination-induced protec-
tion against COVID-19 was primarily based on the assessment of 
humoral immune responses (i.e., the titers and functionalities of 
the neutralizing antibodies). When the assessment was focused on 
cellular immune responses, it was reported that vaccine-induced T-
cell responses were stable over time and cross-recognized numer-
ous variants (including the Omicron variant), thus contributing to 
protection against severe COVID-19.127,128 In addition, it is obvi-
ous that long-term studies that assess humoral and cellular immune 
responses after COVID-19 vaccination, as well as the clinical pro-
tection against SARS-CoV-2 infection or COVID-19 illness, are 
needed in order to draw a definite conclusion on the waning of 
vaccine-induced immune responses over time.

In order to ensure that COVID-19 vaccines will continue to 
provide an adequate level of protection, another strategy, besides 
providing a booster vaccination, would be to modify particular 
antigens of the COVID-19 vaccines.129 Modification of the COV-
ID-19 vaccines could be (i) a novel monovalent vaccine by target-
ing a particular antigen of the circulating VOC, (ii) multivalent 
vaccine containing antigens from different VOCs, or (iii) a pan 
vaccine that would be effective for all strains of SARS-CoV-2 vi-
rus or even sarbecovirus (i.e., the subgenus of SARS-CoV-1 and 
SARS-CoV-2).129,130 Table 4 displays the introduced modifica-
tions in the approved COVID-19 vaccines to create novel monova-
lent and bivalent vaccines.

Moderna is in the process of developing a bivalent booster vac-
cine covering specific mutations on the spike glycoprotein that were 
observed in the ancestral and Beta variants; namely, the mRNA-
1273.211. The primary aim of the bivalent booster would be to re-
tain sufficient titers of neutralizing antibodies and to broaden the im-
munity levels against numerous VOCs. Moderna recently compared 
50 mg of the existing mRNA-1273 booster to 50 mg of mRNA-
1273.211 booster among individuals who had received a primary 
vaccination with the mRNA-1273 vaccine. It was reported that a 
booster of mRNA-1273.211 generated greater antibody response 
and immunogenicity when compared to the mRNA-1273 booster 
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against the ancestral SARS-CoV-2, Beta, and Omicron variants, and 
that both mRNA-1273 and mRNA-1273.211 displayed similar safe-
ty and reactogenicity profiles.131 Another bivalent booster vaccine 
being developed by Moderna is the mRNA-1273.214, which com-
prises the spike gene mRNA from both the ancestral and Omicron 
variants.132 It was reported that administration of 50 mg of a bivalent 
Omicron booster among subjects with a primary vaccination with 
mRNA-1273 was safe and generated a similar level of neutralizing 
antibody titers against the ancestral strain, as well as a stronger level 
of neutralizing antibody titers against the Omicron variant, includ-
ing BA.4 and BA.5.132 In addition, Moderna is developing another 
booster vaccine that would be matched to the spike glycoprotein 
of the Omicron variant and is named mRNA-1273.529. In contrast 
to the results obtained from the bivalent booster, the administra-
tion of the mRNA-1273.529 booster in mRNA-1273-vaccinated 
non-human primates did not provide a better protection than the 
mRNA-1273 booster.122 This suggested that a bivalent/multivalent 
vaccine would be a more reasonable approach in providing protec-
tion against SARS-CoV-2 infection in the near future.

A similar approach is also being pursued by Pfizer/BioNTech 
by creating Omicron-adapted monovalent and bivalent booster 
vaccines. Of note, the bivalent vaccine comprises the spike gly-
coprotein from the ancestral and Omicron BA.1 variants. In an 
ongoing study, in which the booster vaccines were used as the 
fourth dose (at 30 mg and 60 mg doses) in 1,234 participants of 
56 years of age and older, both the Omicron-adapted monovalent 
and bivalent booster vaccines were well-tolerated and were able to 
neutralize the BA.1.133 These Omicron-adapted booster vaccines 
were able to neutralize BA.4 and BA.5 as well, but at threefold 
lower than BA.1.133 Of note, Sanofi/GSK is in the process of test-
ing a new booster (i.e., SARS-CoV-2 adjuvanted recombinant pro-
tein MV monovalent B.1.351/Beta vaccine), which would be used 
among individuals who have received a primary vaccination with 
BNT162b2.134 Its preliminary result indicated that this booster was 
safe and generated high levels of neutralizing antibodies against 
the ancestral, Beta, Delta, and BA.1 variants.134

Sinopharm is currently developing a new inactivated viral vac-
cine targeting the Omicron variant as well. The Omicron-specific 
vaccine is currently being tested in a non-randomized, open-label, 
and externally controlled study with the aim to assess the immuno-
genicity and safety of the inactivated Omicron COVID-19 vaccine 
in a group of adults aged 18–60 years who had never received the 
COVID-19 vaccine.135 This study would determine the usefulness 
of developing inactivated viral vaccines for new circulating VOCs.

Taken together, the fast-evolving SARS-CoV-2, particularly if 
COVID-19 becomes an endemic disease, would eventually require 
an updated version of the current COVID-19 vaccines. Matching 
the target antigens of an updated COVID-19 vaccine to the ones of 
currently circulating VOC could be a reasonable strategy although 
it would not be a straightforward solution due to the constantly 
emerging variants and the difficulty in predicting the efficacy levels 
of the induced immune responses.136 A thorough learning of SARS-
CoV-2 behavior as well as the magnitude and duration of the host 

immune responses upon vaccination would be required to create a 
more effective vaccine against SARS-CoV-2 in the near future.129 
Furthermore, the NIAID is currently conducting a phase 2 study 
named the COVID-19 Variant Immunologic Landscape (COVAIL) 
study in adults who have already received a primary COVID-19 
vaccination and a booster in order to compare the immunogenicity 
of combinations of vaccines based on the ancestral, Beta, Delta, and 
Omicron variants (i.e., mRNA vaccines and experimental protein-
based booster by Sanofi/GSK).129,136 The result of this trial could 
provide a guideline for modifying the COVID-19 vaccines.

Potential mucosal vaccines for COVID-19

An important fact to be aware of is that SARS-CoV-2 infects nasal 
and/or oral mucosal surfaces to enter the human body.137,138 It is of 
interest therefore to develop a mucosal vaccine for COVID-19 in 
order to generate robust immune responses that could protect rel-
evant mucosal tissues against the Omicron infection.139 A mucosal 
vaccine is a promising strategy as the vaccine-generated protective 
immune responses at mucosal sites could prevent the viral infec-
tion from occurring in the first place.139 Therefore, innovative adju-
vant techniques and delivery strategies may be required to develop 
effective mucosal vaccines against SARS-CoV-2 infection.139 As 
such, a variety of devices could be used for delivering the mucosal 
vaccines among which spray devices would be an ideal choice due 
to their being more precise than conventional pipettes.140

Pertaining to a potential nasal vaccine for COVID-19, it was 
reported that an intranasal administration of ChAdOx1-S from Ox-
ford/AstraZeneca in preclinical models resulted in a reduced viral 
load in nasal swabs, bronchoalveolar lavage, and lower respiratory 
tract tissue.141 An open-label clinical trial of intranasal administra-
tion of ChAdOx1-S among healthy human volunteers is currently 
underway.142 Similarly, Bharat Biotech, Hyderabad, India has de-
veloped an intranasal vaccine by using a chimpanzee adenoviral 
vector (replication-incompetent) that encodes the stabilized spike 
glycoprotein of SARS-CoV-2, i.e., ChAd-SARS-CoV-2-S.143 A 
study conducted by Bharat Biotech demonstrated that an intranasal 
administration of one dosage of ChAd-SARS-CoV-2-S could in-
duce neutralizing antibodies and T-cell responses and inhibit viral 
infection in nasal swabs, bronchoalveolar lavage fluid, and lungs 
in rhesus macaques.143 Of note was the fact that the intranasal im-
munization might boost IFN γ-secreting tissue-resident memory 
CD8+ T cells in the lungs and induce long-term immunity for at 
least nine months, as indicated by an expansion of long-lived plas-
ma cells within the bone marrow.140,143

An oral vaccine candidate for COVID-19 is being tested as 
well. VXA-CoV2-1 is an oral recombinant COVID-19 vaccine 
candidate that would deploy a non-replicating recombinant adeno-
virus 5 vector containing a full-length SARS-CoV-2 spike gene 
under the control of the cytomegalovirus promoter and full-length 
SARS-CoV-2 nucleocapsid genes under the control of the human 
beta-actin promoter.144,145 This vaccine would aim to generate 

Table 4.  Modified COVID-19 vaccines currently tested in clinical trials

Vaccine Type Manufacturer Research Name Modification

mRNA Moderna mRNA-1273 Bivalent COVID-19 booster (mRNA-1273.211and mRNA-1273.214); 
Omicron-targeted monovalent booster (mRNA-1273.529).

Pfizer/BioNTech BNT162b2 Omicron-adapted monovalent booster; bivalent COVID-19 booster.

Inactivated virus Sinopharm BBIBP-CorV (Vero Cells) Inactivated Omicron variant.

COVID-19, coronavirus disease 2019; mRNA, messenger RNA.
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three types of immune responses: mucosal immune responses, 
strong serum neutralizing antibodies to the spike glycoprotein, 
as well as T-cell responses to the spike glycoprotein and nucle-
oprotein. In the preclinical studies, oral administration of VXA-
CoV2-1 produced high titers of neutralizing antibodies, activated 
polyfunctional CD4+ and CD8+ T cells, as well as induced protec-
tion against SARS-CoV-2 infection in a Syrian hamster challenge 
model.144 The safety and immunogenicity of an oral VXA-CoV2-1 
are currently being tested among healthy adults.146

Future directions

The continuously evolving SARS-CoV-2 could result in the re-
peated emergence of highly infectious variants, as currently dem-
onstrated by the Omicron variant. Therefore, further studies would 
be required to improve the virological and immunological under-
standings on the impacts of various viral mutations, particularly in 
escaping from the generated immune responses, either through past 
exposure, vaccination, or provision of recombinant anti-SARS-
CoV-2 monoclonal antibodies. In terms of generating prophylactic 
protection, more data would be needed to understand the waning 
of vaccine-induced immune responses in various subpopulations, 
including the elderly, children, and adults with comorbidities, in 
which this information would be useful to determine the optimum 
frequency and interval of administering current COVID-19 vac-
cines and boosters to generate adequate, long-lasting protection 
against SARS-CoV-2 infection. Upcoming research in compar-
ing the current and the modified COVID-19 vaccines would also 
be useful in deciding whether COVID-19 vaccines would require 
regular modification of their target antigens. Research on inducing 
specific mucosal immunity against SARS-CoV-2 would be very 
relevant as well. Therefore, the development of a universal vaccine 
would be, arguably, the holy grail in activating immune responses 
against all variants of SARS-CoV-2. In terms of providing treat-
ment, development of novel antiviral medications that would be 
safe and more effective, as well as new recombinant anti-SARS-
CoV-2 monoclonal antibodies that would not be affected by muta-
tions in the viral RBD would improve the chances to control or 
even reduce the impact of this pandemic.

Conclusions

SARS-CoV-2 is continuously evolving, in which the currently 
circulating Omicron variant of concern is a somber reminder that 
another wave of infection could still occur globally. Various thera-
peutic agents are currently available for patients with COVID-19 
ranging from repurposed drugs, novel antiviral agents, to anti-
SARS-CoV-2 monoclonal antibodies. Furthermore, several COV-
ID-19 prophylactic vaccines have been developed and deployed 
worldwide. Due to the accumulated mutations within the genome, 
particularly in the spike gene of the Omicron variant, there is a 
concern that currently approved vaccines might be inadequate in 
protecting individuals against upcoming SARS-CoV-2 infection. 
Hence, various strategies are being currently utilized, including 
homologous and heterologous booster vaccinations as well as 
vaccine modification. There are potentially two pressing issues of 
concern that have not been discussed in this review; namely, the 
need to ensure equal access for all populations to receive approved 
COVID-19 vaccines and the need to convince everyone to be fully 
vaccinated. It would be worth noting that it is the act of vaccina-
tion, not merely the vaccine, that protects people from COVID-19.
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